Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Current Traditional Medicine ; 9(6):94-118, 2023.
Article in English | EMBASE | ID: covidwho-2304384

ABSTRACT

Background: A novel coronavirus COVID-19 outbreak causing infectious respiratory disorders. COVID-19 disease has no specific treatment. In traditional medicinal system, different formulations are available for infectious diseases. Objective(s): This review discusses the significance and utilization of Siddha and Ayurvedic herbal formulations for COVID-19 treatment and provides scientific information regarding the phytochem-istry and pharmacological profiles of Indian medicinal plants used in the formulation. Method(s): The information on medicine and medicinal plants was collected from research papers, review papers, and books available in several electronic databases, including Google Scholar, SpringerLink, and PubMed was explored as information sources. Result(s): Traditional medicinal plants are potentially used in formulations due to their inevitable therapeutic properties. Phytochemistry and pharmacological properties of medicinal plants used in the formulations served as scientific proof for traditional medicine. Conclusion(s): The present study explored the great importance of Siddha and Ayurvedic formulations for COVID-19 treatment. Further scientific investigations are required to explore these formulations as widely acceptable.Copyright © 2023 Bentham Science Publishers.

2.
Current Traditional Medicine ; 9(6) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2302254

ABSTRACT

Herbal plant extracts or purified phytocomponents have been extensively used to treat several diseases since ancient times. The Indian Ayurvedic system and Chinese traditional medicines have documented the medicinal properties of important herbs. In Ayurveda, the polyherbal formulation is known to exhibit better therapeutic efficacy compared to a single herb. This review focuses on six key ayurvedic herbal plants namely, Tinospora cordifolia, Withania somnifera, Glycyrrhiza glabra/Licorice, Zingiber officinale, Emblica officinalis and Ocimum sanctum. These plants possess specific phytocomponents that aid them in fighting infections and keeping body healthy and stress-free. Plants were selected due to their reported antimicrobial and anti-inflammatory effects in several diseases and effectiveness in controlling viral pathogenesis. An ad-vanced literature search was carried out using Pubmed and google scholar. Result(s): These medicinal plants are known to exhibit several protective features against various diseases or infections. Here we have particularly emphasized on antioxidant, anti-inflammatory, anti-microbial and immunomodulatory properties which are common in these six plants. Recent literature analysis has revealed Ashwagandha to be protective for Covid-19 too. The formulation from such herbs can exhibit synergism and hence better effectiveness against infection and related dis-eases. The importance of these medicinal herbs becomes highly prominent as it maintains the har-monious balance by way of boosting the immunity in a human body. Further, greater mechanistic analyses are required to prove their efficacy in fighting infectious diseases like Covid-19. It opens the arena for in-depth research of identifying and isolating the active components from these herbs and evaluating their potency to inhibit viral infections as polyherbal formulations.Copyright © 2023 Bentham Science Publishers.

3.
Coronaviruses ; 2(12) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2281660

ABSTRACT

Background: The recent outbreak of the COVID-19 pandemic has raised a global health concern due to the unavailability of any vaccines or drugs. The repurposing of traditional herbs with broad-spectrum anti-viral activity can be explored to control or prevent a pandemic. Objective(s): The 3-chymotrypsin-like main protease (3CLpro), also referred to as the "Achilles' heel" of the coronaviruses (CoVs), is highly conserved among CoVs and is a potential drug target. 3CLpro is essential for the virus' life cycle. The objective of the study was to screen and identify broad--spectrum natural phytoconstituents against the conserved active site and substrate-binding site of 3CLpro of HCoVs. Method(s): Herein, we applied the computational strategy based on molecular docking to identify potential phytoconstituents for the non-covalent inhibition of the main protease 3CLpro from four different CoVs, namely, SARS-CoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Result(s): Our study shows that natural phytoconstituents in Triphala (a blend of Emblica officinalis fruit, Terminalia bellerica fruit, and Terminalia chebula fruit), namely chebulagic acid, chebulinic acid, and elagic acid, exhibited the highest binding affinity and lowest dissociation constants (Ki), against the conserved 3CLpro main protease of SARSCoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Besides, phytoconstituents of other herbs like Withania somnifera, Glycyrrhiza glabra, Hyssopus officinalis, Camellia sinensis, Prunella vulgaris, and Ocimum sanctum also showed good binding affinity and lower Ki against the active site of 3CLpro. The top-ranking phyto-constituents' binding interactions clearly showed strong and stable interactions with amino acid residues in the catalytic dyad (CYS-HIS) and substrate-binding pocket of the 3CLpro main proteases. Conclusion(s): This study provides a valuable scaffold for repurposing traditional herbs with anti--CoV activity to combat SARS-CoV-2 and other HCoVs until the discovery of new therapies.Copyright © 2021 Bentham Science Publishers.

4.
Current Traditional Medicine ; 9(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2264998

ABSTRACT

Background: Infectious diseases have posed a major threat to human survival for centu-ries and can devastate entire populations. Recently, the global outbreak of COVID-19 has increased exponentially, affecting more than 200 countries and millions of lives since the fall of 2019, largely due to the ineffectiveness of existing antiviral therapies. WHO announced it a public health emer-gency of international concern. A significant waiting period in antiviral therapy hindered by the rapid evolution of severe acute respiratory syndrome-coronavirus-2 aggravated the situation ensuing imposition of strict laws (e.g., communal dissociation, international travel restrictions, and mainte-nance of hygiene) that would help in inhibiting further outspread of COVID-19. Ayurveda system of medicine offers a holistic approach to the COVID-19 pandemic. Objective(s): This review aims to highlight the potential of medicinal herbs and Ayurvedic drugs as the remedial approach for viral diseases, such as COVID-19. Method(s): We reviewed the literature from journal publication websites and electronic databases, such as Bentham, Science Direct, Pub Med, Scopus, USFDA, etc. Result(s): The drugs used in the traditional system of medicine have the potential to prevent and cure the infected patient. Ayurvedic therapies are known for regulating immunity and rejuvenation properties that behold much promise in the management of COVID-19 disease. Government of India, Ministry of AYUSH recommends some precautionary fitness measures and an increase in immunity with special reference to respiratory health. Conclusion(s): While there is no medication for COVID-19 as of now, taking preventive measures and boosting body immunity is highly recommended. A number of medicinal plants that play an im-portant role in revitalizing the immune system are easily accessible in home remedies.Copyright © 2023 Bentham Science Publishers.

5.
Complement Ther Med ; 65: 102808, 2022 May.
Article in English | MEDLINE | ID: covidwho-1654291

ABSTRACT

OBJECTIVE: This randomized, double-blind, controlled trial (RCT) aimed to evaluate the effect of Phyllanthus Emblica (Amla) as an add-on therapy on COVID-19_ related biomarkers and clinical outcomes in COVID-19 patients. METHODS: In this RCT, sixty-one patients were randomly assigned into two arms [the intervention (n=31) and control arms (n=30)]. The effect of Amla on diagnostic Reverse-transcription Polymerase Chain Reaction (RT-PCR) test results between the first and the last days of the study, the length of stay (LOS) in hospital, the percentage of lung involvement on CT scans, changes in the clinical symptoms, and the laboratory markers were assessed. RESULTS: The two study groups had similar baseline demographics and characteristics in terms of medical history. The mean of LOS in the intervention arm (4.44 days) was significantly shorter than in the control arm (7.18 days, P < 0.001); RT-PCR results were not significantly different between the two arms (P = 0.07). All clinical variables decreased over time in the two groups (P < 0.001). However, the difference between the two groups in terms of fever (P = 0.004), severity of cough (P = 0.001), shortness of breath (P = 0.004), and myalgia (P = 0.005) were significant, but this intergroup comparison was not significant with regard to respiratory rate (P = 0.29), severity of chills (P = 0.06), sore throat (P = 0.22), and weakness (P = 0.12). Out of the eight evaluated para-clinical variables, three variables showed significant improvement in the intervention arm, including the mean increase in oxygen saturation (SpO2) level (P < 0.001), the reduction in the mean percentage of lung involvement on CT (P < 0.001), and the improvement in C-reactive protein test results (P < 0.001). CONCLUSION: Organic herbal Amla tea cannot significantly affect the RT-PCR results and or degree of lung involvement. Nevertheless, it showed an ameliorative effect on the severity of clinical signs and CRP levels. Also, Amla tea may shorten the recovery times of symptoms and LOS in COVID-19 patients.


Subject(s)
COVID-19 , Phyllanthus emblica , Double-Blind Method , Humans , Laboratories , SARS-CoV-2 , Treatment Outcome
6.
Bioinform Biol Insights ; 15: 11779322211027403, 2021.
Article in English | MEDLINE | ID: covidwho-1286796

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.

SELECTION OF CITATIONS
SEARCH DETAIL